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Abstract 

The treatment of secondary extinction currently in 
general use by crystallographers is due to Becker & 
Coppens [Acta Cryst. (1974), A30, 129-147]. It is 
derived from approximate solutions to the Darwin 
transfer equations developed by Zachariasen [Acta 
Cryst. (1967), 23, 558-564]. Among the approxi- 
mations invoked by Zachariasen is that the effects of 
scattering and absorption are to be treated separately. 
A scheme is here proposed which makes that un- 
necessary. It is further suggested that progress in the 
correction of experimental data for secondary- 
extinction effects is more likely if one begins with the 
exact solution to the transfer equations due to Werner 
[J. Appl. Phys. (1974), 45, 3246-3254]. That solution 
has so far not penetrated the diffraction literature, 
probably because it is in the form of a difficult infinite 
series of Bessel functions. In one special case, which 
nevertheless has attracted the general attention of those 
interested in this subject, it is shown that the Werner 
series may be summed, yielding an integral equation 
involving only the zero-order Bessel function. Excellent 
closed-form approximations to this integral, accurate to 
about 1% or less, are displayed. 

Introduction 

The treatment proposed by Becker & Coppens (1974) 
for secondary-extinction corrections to diffraction data 
sets is now in general use by crystallographers. It is 
derived from an approximate theory due to Zac- 
hariasen (1967). This theory presumes that the 
phenomenon of secondary extinction is governed by the 
Darwin transfer equations: 

aIo (a + ;)Io + aI~ 
c~x 

c~I 
- - = - - ( o  + g ) I  + oI o. ~y 

(1) 
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The incident and diffracted intensities, I o and /, are 
functions of position within the crystal which is 
specified by the variables x and y in the directions of the 
incident and diffracted beams. The coupling parameter 
o is the diffracted power per unit volume per unit 
incident intensity and g is the linear absorption 
coefficient. 

An aspect of the Zachariasen treatment is that only 
solutions I~ and I '  to the transfer equations for which g 
is zero are considered. The resultant simplified intensity 
distributions, dependent only on o, are modified by an 
absorption correction dependent only on g to arrive at 
a secondary-extinction correction: 

I 0 = I~ exp [--g(x + y)] "] 

I = I '  exp[--g(x + y)] .J  ~" (2) 

This procedure, of correcting separately for extinction 
and absorption, is preserved in the Becker & Coppens 
treatment. Though equations (2) appear formally to 
satisfy (1), in general upon application of boundary 
conditions appropriate for a specific crystal shape, they 
fail. That is, I and I '  differ by more than the exponential 
factor of equations (2). In addition to this simplifi- 
cation, only an approximate solution to the absorption- 
free transfer equations is used in the treatment of 
Becket & Coppens. 

To emphasize and clarify the interrelation of 
absorption and extinction, it is useful to scale the linear 
dimensions of the crystal by g. The intensity distri- 
butions within the crystal may now be considered 
functions of the dimensionless variables u = px and v = 
gy. In terms of a single secondary-extinction parameter 
y = tr/g (also dimensionless) equations (1) become 

c0u 
- - ( 1  + 7)I0 + yI 

c~I 

c~v 
- ( l + y )  I + y I  o. t (3) 

Io(u,v)=exp[-(1 + y)(u + v)] ~ av 
p =  - - o 0  

x, fv(2Yv/-~) (4a) 
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to Werner (1974) exists: 
A rigorous general solution to equations (1) or (3) due 
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I (u ,v )=exp[- - (1  + 7)(u + v)] 

x j, ,(27v/7~). 

Z ap+ 1 
p---oo 

(4b) 

Here ~ is a modified Bessel function of the first kind 
of order p. Note that its argument, 2 7 X ~  = 2oV/~,  is 
independent of /~. In order that the Zachariasen 
assumption, equations (2), hold, it would be necessary 
that the integration constants ap, to be found from 
boundary conditions, also be independent of p. In 
general they are not. 

A boundary condition to find the a / s  is that along 
some crystal face, say u = k 2 v, that is bathed by an 
incident beam of unit intensity, Io(k2v, v) = 1. Then 
from (4a) 

o r  

exp[(1 + 7)(k2 + 1 ) v ] =  
-t-oO 

Z ap k p ,~(27kv) 
p=--OO 

+oo  

exp[(a + #)(k  z + 1)y] = Y apkP,77p(2aky). (5) 
p = - - o O  

Relations among the ap are found by expanding the 
transcendental functions of (5) as power series and 
equating the coefficients of like powers of y. Clearly 
such relations must contain the linear absorption 
coefficient. 

To the writer's knowledge, the Werner solution 
remains excluded from the crystallographer's array of 
tools for the reduction of integrated intensity measure- 
ments to structure factors, perhaps because it is in the 
form of a cumbersome infinite series of Bessel 
functions. It is the purpose of this contribution to 
consider ways to redress that deficiency. It will be 
shown that in certain simple cases the series of 
equations (4) may be summed, providing simple 
expressions in closed form for I 0 and I. 

I (u ,v )=exp[- - (1  + 7)(u + v)] Z 

x .Y'p(27V~). (7) 
If/~ were set to zero in equations (1), their solution 
found, the boundary conditions of equations (6) 
applied, and then modified as in equation (2), there 
results 

I(u,v) = exp[--(1 + 7)(u + v)l Z • YTp(27 ~ /~) .  

(8) 

Equation (7) is the exact solution to the transfer 
equations for our simple crystal, equation (8) the 
Zachariasen result. 

In the kinematic limit all coupling between the 
incident and diffracted beams is ignored. In that case 
the intensity distribution within the crystal is readily 
found. It is 

I(u,v) = 7(1 -- exp[--v]) exp[--u]. 

If fp(z)  in (7) is replaced by (½z)Up!, its limit for z 
small, the series is readily summed giving 

7 
I(u,v) = { 1 - exp[-(1 + 7) v]} exp[ - ( l  + 7) u] 

1 + 7  

which reduces to the kinematic result for 7 small. The 
Zachariasen result fails this test. Equation (8) approxi- 
mates (7) only for 7 large, that is, only if o >> p. The 
quality of the approximation is questionable. 

Note that the series of both (7) and (8) are of the 
form ~p=l flP,fv(z). Following a treatment quoted by 
Watson (1922) we show that this series may be 
summed. 

Let 
oo 

S ( z ) = , f  o(Z ) + 2 ~, flP.Tp(z). 
p = l  

A crystal whose  boundaries are parallel to the 
directions of  incidence and diffraction 

A special simple case that has interested Zachariasen, 
Werner, and Becker & Coppens is illustrated in Fig. 1. 
The crystal cross section is a parallelogram whose 
edges are parallel to the directions of incidence and 
diffraction. Then the appropriate boundary conditions 
to find the integration constants of (4) are that 

I0(O,v) = 1 / 
(6) ) I(u,O)=O. 

Werner has shown them to be ap = 0 for p > O; a p = 
[(1 + 7)/7] p forp > O, so that equation (4b) becomes 

o 

,° 

% 
' A "~1 u 

Fig. 1. A crystal whose cross section has edges parallel to the 
directions of incidence and diffraction. 
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Then 

o r  

o(3 

dS _ J , ( z )  + Y /7*'[..,e-v_l(Z ) +.Tj,+,(z)], 
d z  p = l  

dS 
- (/7 + 1/ /7)  Y /7*" ,£'v(z)  + /7 , ,<o(Z) ,  

d z  p = l  

o r  

dS 

dz 
- ½(/7 + 11/7) S + ½(/7- 11/7)<fo(Z). 

With S(O) -- 1, the solution to this differential equation 
is 

S=exp[½z(/7 + 1//7)1 + ½(/7- ll/7)expl½z(/7 + 1//7)1 

x ;exp[-½z(/7 + 1//7)] .,¢7.o(z)dz. 
0 

So 
oo 

Y. /7*' J-*'(z)= ½{exp[½z(/7 + 1//7)1 + ½(/7- lift) 
p = l  

x exp[kz( /7  + 1//7)] 

x ;exp[--½z(/7 + 1//7)1 .J-o(z)dz 
0 

- -  J 0 ( z )  }. (9/ 

To evaluate the integral of (9) and clear it of the 
zero-order Bessel function, we make use of two 
approximate representations: 

1[1 .~4 (10) For z < 2, So(Z) ~_ 1 + (½Z) 2 "+- ~\~'] " 

{ 1  /exp z' 
For z > 2, JTo(Z ) ~ 1 + 8-7 + 2 X ~ "  

(11) 

Each of these approximations improves the more z 
differs from two. Each is worst for its range of use at 
z = 2. We have from the tables <f,0(2) = 2. ~796, while 
expression (10) gives 2.2500 and from (11), 2.2513. At 
z = 2 each of the approximations yields an error of 
about 1%. Hence their use in equation (9) should result 
in errors significantly less than 1%. 

Insertion of (10) into (9) gives, for z < 2, 

+_ +__ lOe / 
Z/7 "  4 ( z ) =  (/7 + 11/7)' J 

x {exp[½z(/7 + 11 /7)1-1}  

--{/73+4/7-41/7-1//7a(/7 + 1//7) 4 (2)  

2t j 

2 [(/7 + 1//7) 

From (12) we may readily find ~.v~ (-/7)CTv(z); it 
may be combined with (12) to find expressions for 
sums over even- and odd-order Bessel functions: 

/72py,_2v(z) = /7' + 5,8 a + 10/7] 

x /cosh[½z(/7 + 1 / /7) ] -1}  

2{  (/7+11/7) 3 

: {/7 fl-1//7) (2) 4 , (13) 

and 

Z°° /72p--l '7-2v-l(Z) = { /7' + 5/7 a + lOft) 

. : ,  (/77i) 7 'j 
x sinhl½z(/7 + 1//7)] 

1( . /7- -1 / /7  (2) 3" (14) 
2 ( /7+ 1//7) 2 

For z > 2, it is convenient to rewrite equation (9). Since 

z oo 

f exp[-kz] .flo(Z)dz = f exp[-kz] .fo(Z) dz 
0 0 

oo 

-- f exp[-kz] ,  fo(z)  dz 

and 

121 f exp[--½z(/7 + 1//7)] .fo(z)dz = 
o / 7 -  1//7 

for/7 > 1, equation (9) becomes 

oo 

Z /70 J-p(z) =½{2 exP[½Z(fl + 1//7)1--½(fl-- 1//7) 
p = l  

x exp[kz(fl + 1//7)1 
oo 

x f exp[-½z(fl + 1/fl)]<f,o(z)dz 
z 

- <,to(Z)} (151 
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and for 0 < fl < 1, 

#. ~.(z) = ½1½(1/~- ~) expI½z(~ + 1/#)1 
p = l  

oO 

× f exp[--½z(fl + 1/fl)l,YTo(z)dz 
g 

-- fo(Z)}. (16) 

Insertion of approximation (11) into equation (15) 
gives, for z > 2 and fl > l, 

oo { 1 ( f l+l )  [1 (fl_1)2 
E ~ J~(z)=  1 

v=l 4 V'~ 8fl 

+ l-?gF l 

x exp[lz(fl + 1/p)l 

• 

3(fl 2 - 1) (fl - 1)z ] 
I l 256fl 2 [1+ 

9 

256z 2 

3(fl 2 -- 1) ] 1 
'~ - -  

256fl z 

exp[z] 
(17) 

and with equations (11) and (16), one finds for z > 2 
and0  < f l <  1, 

~. fit, j ' v (z)  _ (fl + 1) (fl -- 1)2 
p = l  ~ 1 8fl 

+ 3(fl-- 1) 2] z 
~ - f lS  j erfc [ ( 1 - f l )  ~/2z2~] } 

× exp[½z(fl + 1/fl)] 

_ { [ ~  (116lt-'B2) 

+ 256fl2 + 

3(1 - fiE)] 1 ~ }  exp[zl 

(18) 

In equations (17) and (18), erfc is the complementary 
error function. Note that (17) and (18) reduce to a 
common result for fl = 1. 

To test the utility of the treatment described above 
for evaluating the Bessel-function sums of equations (7) 
and (8) for a crystal with the configuration of Fig. 1, we 

have taken A = B = 1, y = ½, and we have found I(u,1) 
across the exit face of the crystal for the kinematic 
approximation, the exact solution to the transfer 
equations [equation (7)], and the Zachariasen result 
[equation (8)]. The result is shown in Fig. 2. It is 
evident that none of these curves is a good approxi- 
mation to either of the other two. Curves B and C were 
both found form the sums of equations (7) and (8) and 
by their approximate representations from equation 
(12). The differences are imperceptible. The curves of 
Fig. 2 represent either calculation equally well. 

Discussion 

There are several approximations in the Zachariasen 
(1967) treatment of secondary extinction, some of 
which are propagated into the Becker & Coppens 
(1974) theory of that phenomenon. It is useful to quote 
them and comment on them. At the root of the 
Zachariasen theory is the assumption that absorption 
and extinction may be treated separately [equations 
(2)]. We have argued here that that is a poor 
approximation and not necessary. Further, both Zac- 
hariasen and Becker & Coppens use only approximate 
solutions to the absorption-free transfer equations. As 
we have pointed out, an exact solution to the general 
transfer equations with absorption is available. In its 
earliest form, it is given by Werner, Arrott, King & 
Kendrick (1966). A possible argument against its use i s  
that it consists of a difficult infinite sum of Bessel 
functions. We have attempted to show here that at least 
in some cases an excellent closed-form approximation 
to that sum exists. Perhaps in other cases analogous 
closed-form representations of the Bessel-function sum 
can be found. Neither Zachariasen nor Becker & 
Coppens refer to the exact solution found by Werner et 
al. 

0-3 

,4 
0.2 

z(u,l) 

0-1 
C 

0.0, 
0.0 0'-2 014 016 0:8 |I0 

u 

Fig. 2. The intensity across the exit face of the crystal of Fig. 1 for 
A = B = 1, y = ½. Curve A: kinematic. Curve B: the exact 
Werner solution. Curve C: the Zachariasen solution. 
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Subsequent to the approximation given by equations 
(2) Zachariasen appends a further approximation. It is 
that (2) may be written 

I =  I '  exp[-g(x + y)] = I' A(g)  (19) 

[Zachariasen's (1967) equation (41)]. Here A(g)  is 
simply the absorption correction appropriate for the 
kinematic result. This approximation modifies the 
Zachariasen solution displayed in Fig. 2 in that the 
solution is normalized so that it agrees with the 
kinematic solution in the limit that tr is small. However, 
its justification is obscure. Zachariasen claims that it is 
appropriate unless absorption effects are large. In 
actuality equation (19) holds in the limit that g >> tr, in 
which case absorption effects and scattering may be 
treated separately and there results the kinematic 
theory. Becker & Coppens develop a rather more 
involved treatment of the effect of absorption. How- 
ever, it is evolved still within the context of their 
approximate solution to the transfer equations, and it 
appears to contain the conclusion that often the 
diffraction effects related to a and g may essentially be 
treated separately. 

It is probably still useful to retain clearly the 
distinction between primary and secondary extinction. 
That the coupling of the incident and diffracted 

amplitudes, with specific phase relations, is a phenom- 
enon describable by solutions to the transfer 
equations, appropriate only for the incoherent phenom- 
enon of secondary extinction, seems unlikely. 

Experimental tests that allow the identification of 
observed extinction as of either the primary or 
secondary variety should also be useful. A description 
of such a test will be the subject of a subsequent 
contribution. 

It seems to this writer that the present state of the 
theory of secondary extinction is primitive. The 
calculations described here are intended to suggest that 
the appropriate point of departure for further quantita- 
tive insights into this phenomenon is the exact solution 
to the transfer equations given by Werner. 
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Abstract  

The mechanism of the low = high quartz phase 
transformation is discussed in terms of tilting of [SiO 4] 
tetrahedra and formation of Dauphin6 twin domains 
below the transformation temperature. The low-quartz 
domain boundaries have a finite thickness. Within the 
domain wall the tilt angle changes gradually from + tp to 
-~0. Depending on temperature, the gradual change 
may be static or there may be a change of the average 

0567-7394/82/020252-05501.00 

value of tp due to a dynamical process. Around the 
center of the wall between the low-quartz domains the 
structure resembles that of high quartz. The co- 
existence of low- and high-quartz-type regions in a 
temperature range below the transformation tempera- 
ture is a necessary consequence of the formation of 
coherent domains. It is concluded that analogous 
ranges of coexistence of low- and high-symmetry 
regions exist in many, if not all, displacive phase 
transformations in which the phases involved have 
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